
SQL+PaWS: SQL and People as Web Services
Steve Goschnick

University of Melbourne
Agent Lab & IDG Group,

Department of Information Systems
111 Barry St, Australia, 3010

+61 3 8344 1527
stevenbg@unimelb.edu.au

ABSTRACT
This paper introduces SQL+PaWS - a simple technology that
allows SQL databases and people to become minimalist Web
Services. The data delivery mechanism is a simple two
dimensional uniform table in HTML, used to represent sets or a
vector of data. SQL+PaWS has two levels of use both of them
are easy and flexible: SQL+PaWS is readable by people and i s
also machine-readable by client-side programs that consume
web services. SQL+PaWS is writable either by people with
web-page editors following a simple protocol, or via a small
piece of code that retrieves data from SQL-oriented database
management systems. The users who wish to use SQL sourced
data feeds can prototype and hone their SELECT statements via
a single text-area field in a HTML form - almost all web-servers
have an SQL DBMS on them of some sort, giving broad
availability. Individuals who author web-pages with editors
such as DreamWeaver, can become providers of web-services,
in turn read by people or by software. The client-side software
may be simple consumers of just the data such as a spreadsheet
program, or it may be used to put together mashup
applications, or even something as sophisticated as a DSS
(Decision Support System) or other data warehousing products
such as a part of a data warehouse extraction phase.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Interaction Styles. C.2.4 [Computer Systems
Organization]: Computer-Communication Networks –
Distributed Applications.
General Terms
Management, Human Factors, Standardization.

Keywords
Internet interfaces, web services, end-user computing, SQL,
DBMS, HCI, SOA, SaaS, client-server, DSS, software agents.

1. INTRODUCTION
This paper describes the general adoption and usage of a small
piece of technology written in a few days but heavily used
everyday since. It uses two mundane, broadly adopted
technologies - SQL and the humble HTML <table> tag - to
deliver web services which are easy to prototype easy to host
(all technology needed is already in place) easy to test and
easy to use. Initially it was developed to make management
data available to users at home, and to Information System (IS)
students in the lab and at home. The invention of it came out
of frustration with the formal definitions of web services: their
continually growing complexity, the different vendor

interpretations and shifting standards, and the transient nature
(on air, off air) of some of the freely available SOAP [4] and
WSDL [5] web services. The management need was to access
certain workplace-hosted data from home through the web
browser, and the student need was for multiple data streams
from different web services, brought together in mashup
applications - which they model and develop in lab exercises.
In both cases, the underlying need was to use existing
technology, that didn’t require the installation of a web
service server.

2. People Can be Web Services Too
The use of SQL+PaWS is potentially very generic and includes
a convention that allows people to post their own data in a
particular HTML format. I.e. Individuals who routinely collect
data, can simply post it on the Internet as a Web Service to
other people and/or organizations, without the need to use an
SQL database at all. Figure 1 shows that either people and/or
SQL-oriented databases can be the source of an SQL+PaWS web
service, and either people and/or software clients can be the
consumers of SQL+PaWS web services.

http

SQL+PaWSPeople

SQL
database

Client
software

People

providers consumers<table> </table>

Figure 1. Overview of SQL and People as Web Services

Often, what a manager or an office worker needs on the road or
at home, is not data from some remote 3rd party server but the
data from ones own work-related web servers. And whether its
data from work’s web servers or from other 3rd parties out
there on the Internet, what is often needed format-wise, is a
simple set of data in a tabular 2D format. However, almost all
of the web service technologies and stacks (SOAP, WSDL,
XML-RPC, and others) that return data over the Internet
protocols (HTTP, SMTP) in a machine-readable format, return i t
in a format that is hierarchically structured.

Figure 2 shows an example country code/currency code
SQL+PaWS web service, as it is displayed in the browser, while
figure 3 shows a manually constructed SQL Select command
within the simple HTML form interface to SQL+PaWS, which
produced the result seen in figure 1 – same URL. While figure
2 is what a human consumer of the web service will see in the
web browser, a client-side application program consumes the
same data programmatically. Similarly, figure 3 shows the
HTML form interface that an end-user would use to prototype
and test an SQL command, but once the SELECT statement
works satisfactorily for an often-used data retrieval, it can then
be cut-and-pasted into a client application program which will
automate the web service call, as in the dialog-window based
interface shown in figure 4.

Clearly, a HTML table like that in figure 2 can easily be
authored by a person, rather than produced by an SQL Select
statement querying against a database. A human consumer of
the table is none-the-wiser. A client application program using
it merely needs to be told that it does not require an SQL
statement, and can thereafter simply retrieve the table from the
URL it is given, as with a SQL database produced table.

3. The Mechanics and Protocol
The HTML table carrying the data payload for SQL+PaWS is
always a 2 dimensional uniform grid i.e. set-based data,
including a vector (a single row). It may be imbedded any
where within any sort of HTML file with any number of other
tables. The start of the SQL+PaWS table is marked with an
anchor tag – see line 1 in Listing1 below. (Nb. Standard HTML
usually uses such anchor tags - a variant on the link tag - to
allow browsers to start the display of a page, part way down the
file). The opening table tag <table> immediately follows the
 relative anchor. See the
SQL+PaWS Specification [6] for more details.
Listing 1. HTML code fragment with essential insertions

<table>
<caption align="bottom">Date Created: Sep 28,
2007 1:27:12 PM</caption>
<thead valign="top">
<tr>
 <th>CountryName</th>
 <th>CountryCode</th>
 <th>CurrencyCode</th>
 <th>CurrencyName</th>
</tr>
<tr>
 <th>VARCHAR(60)</th>
 <th>CHAR(2)</th>
 <th>CHAR(3)</th>
 <th>VARCHAR(50)</th>
</tr> ...
</thead>
<tbody>
<tr>
 <td>AMERICAN SAMOA</td>
 <td>AS</td> ...
</tr> ...
</tbody>
</table>

Figure 2. HTML Table produced, with data names and types
After locating the correct table via the relative anchor, the
standard HTML table <caption> tag is used to hold a time-
stamp of the publication of the data. Next, the metadata
(attribute name and type) necessary to identify the data
attributes held in the table proper, are put within the standard
HTML <thead> metadata </thead> tags. Then the actual data i s
held in rows (the <tr> tags) all within the standard HTML
<tbody> data </tbody> tags.

So, for those people-authored pages, what is the incentive for
the authors to write their pages in this SQL+PaWS format over
simply publishing them in any old HTML formatted page?
Primarily motivation is that the pages of the same format can
be written by the SQL database generated web services too, and
that there is a vast number of such databases out there on the
Internet, holding much of the world’s data. Any client software
applications that can read the SQL generated web services, can
also read the people-authored pages. People are on an equal
footing as sources of data.

Note: There is a second version of the form presented in figure
3, which includes both a user-name and a password field, for
secure access to a particular SQL+PaWS web service.

4. SUBTLE CHANGE IN THINKING OVER TIME
It was a very subtle change in thinking needed to bring
SQL+PaWS about - the sort of change that is often more
difficult to make than when a large change in thinking i s
necessary. While it took less than a day to write the code
behind the web-interface in figure 3 (even though it is totally
general purpose against any SQL-oriented database on a web-
server), it took several months beforehand to gradually see the

subtle changes needed to web services to make them this
simple to build and use, via technology already in place. So, a
question that comes to mind, to which I try to uncover
possible answers in the next section, is: why hadn’t it been
done before?

When a web-publisher or a casual web-page author thinks of
the <Table> construct in HTML it is often associated with
thoughts and experiences of some of the less-predictable
behaviour of HTML editing. The non-2D-grid format variant of
HTML tables have predominantly been used within web page
content, to carve up well-designed graphics and artwork,
making some parts of those graphics interactive. Tables used
as such, have given graphic designers the ability to control the
display of their carefully constructed graphic elements in a
WYSIWYG (what-you-see-is-what-you-get) manner, in an
otherwise non-WYSIWYG technology (i.e. HTML in the Web
Browser). However, the humble HTML table can also clearly be
used to describe a simple uniform 2D table, and that in turn
can be used to define attribute names and attribute types in a
uniform and machine-readable manner too - and that
constitutes a data schema, metadata that can be read accurately
and with purpose by both people and application software.

The other well-established convention in web services is to
encode all machine-readable information into a tagged
language predominantly based on the XML language. Given
that XML is for the definition of hierarchical structures, i t
means that even set data will end up in an often deeply
structured hierarchy. It is useful to reflect on the history of the
tagged languages to see how this sits with SQL-oriented
relational DBMSs which are also termed structured databases.

4.1 Structured and Textural Databases
Prior to tag languages being in the opposite corner to
structured database management systems (relational DBMS),
the so-called free-text searching (or textural) DBMSs filled
that position - represented by products on mainframes a
generation ago with names like STAIRS and BASIS, upon
which vast collections of textual information was stored,
indexed and searched. These were the precursors to the Internet
and to Google and the other search engines. Technically
oriented libraries (the sort that hold books and have readers
visit them) used the likes of STAIRS and BASIS to index and
retrieve free-text documents - files with large text fields such
as the abstract of a paper, and another field holding the whole
paper itself. These technical librarians and their information
analyst associates and their needs eventually led to the first
great tag language SGML, the mother-language of both HTML
and XML, but more akin to XML. Users of both SGML and
XML can create their own tags via a separate schema file, much
as one does in the internal schema of a relational DBMS.

So, prior to XML there were two disparate but highly
professional languages in the management of information
realm, serving two distinct markets: SQL for structured
DBMSs, and SGML for free-text search DBMSs. Then along
came XML and in particular XML Schema the variant of XML
schema language you use to define your own tags, (rather than
the earlier alternative schema language: XML DTD). XML
together with XML Schema effectively represents a merging of
the two previously divergent main streams of DBMS - both
structured data and free-text/textural. But do we always want
or need a language that merges both structured and free-text
data? Will it be the most efficient, or the most user-friendly

method to use a language that merges structure data and free-
text data?

Figure 3. The simple HTML input form with an SQL select
command that produces the table in figure2

When you discard all of the technicalities, it all comes down to
sets (flat files) and hierarchies (trees structure files). In a
relational DBMS new sets can be projected from joining
relationships between existing sets using the SELECT
command, which features in figure 3. Some things naturally
require or use hierarchies - the sort of textual data in a book
that is described by the index of that book, is the sort of
information hierarchy that XML can easily accommodate.
Some applications thrive on sets - regular, rectangular
arrangements of data, with a fixed number of columns
(attributes) and a variable number of rows (records) - for
example the sheets in a spreadsheet program.

There are things that XML shines at and things that SQL shines
at but often they are different things. Hierarchies are good for
representing (programmed) objects and their relationship with
other objects. Sets are good for representing uniform
groupings of like data. SQL+PaWS is designed for set data and
data vectors (a single row of attributes – similar to the
attributes that a program procedural call will return, as in RPC
– remote procedural call).

Because web services (e.g. SOAP, WSDL) have been delivered
over Internet transport protocols (mainly HTTP), the use of
XML-derived languages is the default choice for such
purposes. Web Services often carry data from server-side SQL-
oriented DBMS, and that data gets passed through a number of
hierarchically-structured XML defined tag languages before
getting to a user, even though it is very often placed back into
a form or a spreadsheet, which is back in a set format! In the
case of set data (the only sort held in a Relational DBMS),
SQL+PaWS bypasses those many levels of tag-based language,
except for HTML itself.

Figure 4. Simple cut’n’paste of tested URL and SELECT into
a client-side tool – the DigitalFriend in this case

5. CONCLUSION
The concept of Web Services is simply about providing an
interface to web/distributed systems that our software can use,
in an analogous way that we humans are happily using the
Web browser interface. I.e. I would like my software to find,
monitor, filter and condense information from the Internet,
while I am happily doing something else like social
networking or something more leisure-oriented. Then i t
should present what its found, when I need it, not before and
not after. Web Services are the Internet-side of making that a
reality. Anything more technical than that description of Web
services is just that - technicalities. By considering the use of
mundane technologies alone for the delivery of web services
(in this case: SQL-oriented DBMS on the server – a very
common situation), came the realization that all of the extra
technology to make conventional web services work, can be
bypassed and is probably hindering the large scale building
and usage of them.
The use of the HTML table to present subsets and projections
of data and metadata from database systems has previously
been overlooked perhaps due to two factors: a). The HTML
table has been appropriated [1] by the authors of web pages to
do WYSIWYG graphic design. b). There has been a headlong
rush to present all data that needs to be machine readable, in an
XML derived <tag> language designed for the purpose (e.g.
WSDL, XML-RPC), when a perfectly serviceable, appropriated
and domesticated tag language is broadly available and used
in the form of HTML.

The SQL relational DBMS is one of the main technologies
behind the success of Web 2.0 companies [3] - it is a state-
machine in marriage with the stateless protocol of the Internet
HTTP protocol. Most large organisations hold their
operational data in a relational DBMS. Whether their DBMS is
Oracle, Sybase, MS SQL Server, IBM's DB2, MySQL or
PostgreSQL, they are all capable of running SQL Standard
queries via the flexible and powerful SELECT command [2].
Most website hosting companies offer an option with a
Relational DBMS backend and a server-side scripting
language (either: ASP, JSP or PHP – used by SQL+PaWS
server-side) to build dynamic web pages. SQL+PaWS offers a
simple way to harness those resources as low-tech, low
technical threshold web services, without any extra
infrastructure or installation.

SOAP and WSDL web services have often failed to allow us to
cross boundaries between work, school and home, partly
because of the complexity of setting them up, and partly
because of evolving and burgeoning standards involved (e.g.
SOAP 1.1, WSDL 1.1, WSDL 2.0, WS-Adressing, WS-Security,
WS-ReliableMessaging, WS-Policy, etc.) – i.e. they still
represent a moving and technically expanding target.
SQL+PaWS is a simple, open source, low-tech solution that
crosses these boundaries by using only mundane technologies
- going from sets at the source end, and presented as sets at the
consumer end, with little transformation through hierarchical
file structures enroute. While it uses two of the most widely
used computer languages available - SQL and HTML - it also
allows people to be either the source or the consumer of the
data in such a web service. The client-side software may simply
be a consumer of just the data such as a Web browser, a
spreadsheet program, or it may be used to put together mashup
applications, or even something as sophisticated as an agent
system, a DSS (Decision Support System) or other data
warehousing products such as a part of a data warehouse
extraction phase.

6. ACKNOWLEDGMENTS
My thanks to the many students of my subject titled Database
Systems and Information Modelling at the University of
Melbourne for being the reason and the need, and hence the
inspiration for SQL+PaWS web services, and the first users of
it.

7. REFERENCES
[1] Carroll, J., Howard, S., Peck., J. and Murphy, J. (2003).

From adoption to use: the process of appropriating a
mobile phone, Australian Journal of Information Systems,
10:2, 38-38.

[2] Date, C.J. 2005. Database in Depth: Relational Theory for
Practitioners, O’Reilly Press, 230 pages.

[3] O’Reilly, T. 2005. What Is Web 2.0.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html

[4] W3C. 2000. Simple Object Access Protocol (SOAP)
Version 1.1. http://www.w3.org/TR/soap/

[5] W3C. 2007. Web Service Description Language (WSDL)
Version 2.0. http://www.w3.org/TR/wsdl20/

[6] SQL+PaWS. 2007. SQL+PaWS Specification.
http://www.DigitalFriend.org/technology/SQL+PaWS/

